

18 CS 33

Third Semester B.E. Degree Examination, Aug./Sept. 2020 Analog and Digital Electronics

Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.
 Module-1

1 a. With a neat diagram, explain the working principle of photocoupler.
(08 Marks)
b. List the different types of BJT biasing. Derive the expression for collector emitter voltage $\left(\mathrm{V}_{\mathrm{CE}}\right)$ for fixed bias circuit.
(08 Marks)
c. Write a note on light emitting diode.
(04 Marks)

2 a. Explain with neat diagram, the construction, working principle and characteristics equation of photodiode.
(08 Marks)
b. With a neat waveform and circuit diagram, explain the working of monostable multivibrator.
(06 Marks)
c. Explain with neat diagram R-2R ladder type DAC and derive the expression for V_{0}.
(06 Marks)

Module-2

3 a. Minimize the following function for SOP using K-map and implement it using basic gates:

$$
\mathrm{f}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d})=\Pi \mathrm{M}(5,7,13,14,15)+\mathrm{d}(1,2,3,9)
$$

(06 Marks)
b. Design the function EX-OR using (i) NAND gates only
(ii) NOR gates only
(06 Marks)
c. A switching circuit has two control inputs (C_{1} and C_{2}), two data inputs $\left(\mathrm{X}_{1}\right.$ and $\left.\mathrm{X}_{2}\right)$ and one output Z. The circuit performs one of the logic functions such as OR, XOR, AND, EQU for control inputs combination $\mathrm{C}_{1}, \mathrm{C}_{2}$ as $00,01,10,11$ respectively:
(i) Derive the truth table for Z
(ii) Use a K-map to find minimum AND-OR gate circuit to realize Z.
(04 Marks)

OR

4 a. Minimize the following function for POS using Kmap and realize it by using basic gates:

$$
f(a, b, c, d)=\Pi M(0,1,6,8,11,12)+d(3,7,4,15)
$$

(06 Marks)
b. Plot the following function on a K-map (Do not expand to minterm before plotting): $F(A, B, C, D)=\bar{A} \bar{B}+C \bar{D}+A B C+\bar{A} \bar{B} C \bar{D}+A B C \bar{D}$, find the minimum sum of products.
(06 Marks)
c. A digital system is to be designed in which the month of the year is given as I/P is four bit form. The month January is represented as ' 0000 ', February as ' 0001 ' and so on. The output of the system should be ' 1 ' corresponding to the input of the month containing 31 days or otherwise it is ' 0 '. Consider the excess number in the I/P beyond ' 1011 ' as don't care condition:
(i) Write truth table, SOP $\Sigma \mathrm{m}$ and POSПM form
(ii) Simplify for SOP using K-map
(iii) Realize using basic gates
(08 Marks)

Module-3

5 a. Explain with neat diagram static hazard 0 and its recover method.
(06 Marks)
Implement the following function using $3 \times 4 \times 2 \mathrm{PLA}$:
b. $\mathrm{A}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum \mathrm{m}(0,1,3,4) ; \mathrm{B}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum \mathrm{m}(1,2,3,4,5)$
(08 Marks)
Using EVM method simplify the following function and implement it by using 8:1 MUX
c. $F(a, b, c, d)=\Sigma m(0,1,2,4,5,6,9,10,12,13,14,15)$

OR

6 a. With a neat diagram, explain 3 to 8 line decoder.
(04 Marks)
b. Construct 32:1 MUX using 8:1 MUX and 2:4 decoder.
(08 Marks)
c. Design 7 segment decoder and realize using PLA.

Module-4

7 a. Explain with a neat diagram, VHDL program structure.
(06 Marks)
b. Construct SR gates latch using NAND gates and derive the characteristics equation for the same.
c. Explain T-flipflop with characteristics equation,

OR
8 a. Explain with neat diagram, working of JK flip flop and derive its characteristic equation.
b. Write VHDL code for 4 bit adder.
(08 Marks)
c. Explain the application of SR latch in switch debouncing technique.

Module-5

9 a. With neat diagram, explain 4 bit parallel adder with accumulator.
(08 Marks)
b. With diagram explain 4 bit SISO register.
(08 Marks)
c. Write a note on Johnson tail counter.

OR

10 a. Design Mod 5 counter using JK flipflops.
(10 Marks)
b. Explain 4 bit PIPO shift register with block diagram.
(06 Marks)
c. Write a note on ring counter.

